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Order parameter fluctuations for the two-dimensional Ising model in the region of the critical temperature
are presented. A locus of temperaturesT*sLd and a locus of magnetic fieldsB*sLd are identified, for which the
probability density function is similar to that for the two-dimensionalXY model in the spin wave approxima-
tion. The characteristics of the fluctuations along these points are largely independent of universality class. We
show that the largest range of fluctuations relative to the variance of the distribution occurs along these loci of
points, rather than at the critical temperature itself and we discuss this observation in terms of intermittency.
Our motivation is the identification of a generic form for fluctuations in correlated systems in accordance with
recent experimental and numerical observations. We conclude that a universality-class-dependent form for the
fluctuations is a particularity of critical phenomena related to the change in symmetry at a phase transition.
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I. INTRODUCTION

There is ubiquitous interest in systems with extended spa-
tial and temporal correlations, from all areas of physics. Re-
cently, observations of fluctuations of global, or spatially av-
eraged measures of such correlations, have provided a
possible link between critical phenomena and nonequilib-
rium systems. That is, the probability density function(PDF)
for order parameter fluctuations in the low temperature criti-
cal phase of the two-dimensional(2D) XY model, shown in
Figs. 1 and 2 below, is very similar to PDFs[1] for spatially
fluctuating or temporally averaged quantities in turbulent
flow [2–4], for electroconvection in nematic liquid crystals
[5], for numerical models of dissipative systems[6–9] and of
“self-organized criticality” [10], for fluctuations of river
heights [11,12], as well as for other equilibrium systems
close to criticality[10,13–15]. The simplicity of the 2DXY
model allows a complete understanding of fluctuation phe-
nomena in this case[16–18]. The contrary is true for non-
equilibrium systems; the lack of microscopic theory makes
the problems extremely complex. Phenomenological obser-
vations and analogy with better understood systems can
therefore be extremely useful.

However, for other critical systems, such generic behavior
seems only to be observed under restricted conditions. For
example, it has been shown that magnetic fluctuations in the
two-dimensional Ising model, at a temperatureT*sLd (where
L is the system size in units of the lattice constant), below
but near the critical temperatureTc, are similar to those of
the 2D XY model [10,13–15]. Given the important role
played by universality classes in critical phenomena, this is
rather surprising. In fact, it is well established that critical
fluctuations, as measured atTc [19–21], depend in general on

the universality class of the model, as well as on the shape
[16] of the sample and on the boundary conditions[22]. The
apparent similarity of the form of the fluctuations, over and
above the universality class of the models under consider-
ation, therefore seems rather puzzling[13].

Given the generality of the above observations in more
complex systems, it is important to understand this point. In
this paper we address it in detail for the two-dimensional
Ising model and in doing so pose the following questions.
Is the similarity in form quantitative, or only qualitative? Is
this PDF really a measure of critical fluctuations in the
problem? Finally, can we, from this investigation shed any
further light on the reason for the apparent “super-
universality” observed in the wide range of experimental and
numerical systems?

In answer to these questions, we show that the distribution
functions for the Ising andXY models atT*sLd are similar,
with the latter representing an excellent fit over almost any
accessible window of measurements for experimental sys-
tems. However, they are not the same functions. Numerical
evidence suggests that the difference will remain in the ther-
modynamic limit. The origin of the difference is the structure
of phase space associated with the Ising transition. For large
amplitude fluctuations the system localized in one half of
phase space is able to surmount the barrier separating it from
the other, symmetric half of phase space. If instead one ap-
proaches the critical point by applying a small magnetic
field, symmetry remains broken and one finds a fieldB*sLd
giving excellent quantitative agreement between the PDF for
the Ising model and that for the 2DXY model.

We confirm that, despite the small value of the correlation
lengthj [13,15] at T*sLd, the system does show evidence of
correlations on all scales up to a length of the order of the
system size. A consequence of this is the development of
coherent structures, the clusters of spins, up to this macro-
scopic scale, that dominate the exponential tail of the distri-
bution.

From the above, we conclude that the dependence of the
PDF on the universality class comes from the structure of
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phase space and the way in which symmetry is restored on
passing through the phase transition. If long range correla-
tions develop, without the ensuing fluctuations exposing a
structured phase space, such as occurs in the Ising transition,
then the form of the fluctutations will be largely independent
of universality class. This is the case in the 2DXY model
[23] and we propose that it is key to the approximate “super-
universality” observed in a large array of correlated systems.

II. ORDER PARAMETER FLUCTUATIONS IN THE 2D
ISING MODEL

The Hamiltonian for the Ising model is given by

H = − Jo
ki,jl

SiSj, Si = ± 1,

with J.0 the exchange constant. We study the model on a
square lattice of sizeN=L3L, with periodic boundary con-
ditions and with lattice parametera=1. The order parameter
is defined as the modulus of the magnetization:

m= U 1

N
o
i=1

N

SiU .

Previous studies by Bramwellet al. [10], Zheng and
Trimper[13], and Zheng[15] suggest that there is a tempera-
ture T*sLd just below the critical temperature, for which the
PDF is close to that of the 2DXY model in the low tempera-
ture phase. It was further suggested thatT*sLd scales toward
the critical temperature as the thermodynamic limit is taken
and can thus be interpreted as a critical phenomenon[14].
The first step in our study was to confirm this result. Note
that, within the spin wave approximation, the PDF for the 2D
XY model has the form shown in Figs. 1 and 2, indepen-
dently of temperature and hence of critical exponent[16].
The PDF was calculated using the Swendsen-Wang Monte
Carlo algorithm[25] for various sizesL between 32 and 512.
Here we defineT*sLd as the temperature for which the skew-
ness of the distribution,g(T*sLd) is equal to that for the 2D
XY model, gXY, for data restricted to the windowm=sm
−kmld /sP f−6;3g. We are able to establish this criterion
with a numerical precisiong(T*sLd)=gXY±0.01, giving an
error for T*sLd of less than 2%. This criterion, though pre-
cise, is arbitrary and we could choose others. However, as it
is only an approximate agreement between the two sets of
data, making alternative definitions does not alter the results
discussed below. Figure 1 shows log10fsPsmdg againstm for
various temperatures and forL=64. The solid line is the PDF
for the 2D-XY model [16]. The best fit is forT*sL=64d
=2.11J, while the critical temperature for the infinite system,
as given by Onsager’s exact solution, isTc=2.25J. One can
see thatT*sLd is significantly shifted belowTc. At higher
temperatures, the probability for fluctuations below the mean
is a concave function ofumu and there is no region approxi-
mating to an exponential tail. The PDF is cut off at a finite
value of m corresponding to the constraintm=0. As one
expects, this corresponds to a turning point in probability and
reflects the access of the finite size system to the complete
and symmetric phase space.

A distribution with an exponential or quasiexponential tail
cannot correctly describe this minimum and therefore for
symmetry reasons the distribution for the 2DXY model can-
not exactly describe the data for the Ising model in zero field,
for any temperature belowTcsLd [24]. However, atT*sLd the
fit is good for fluctuations out to −5s below the mean mag-
netization, corresponding to a probability density of 10−3

[15]. From an experimental point of view, reliable data for
m,−6 would be exceptional[2,5,9], and in this sense the
agreement between the Ising and theXY model data is very
satisfactory(see inset of Fig. 1). Here we have good statistics
for fluctuations out as far as −8s from the mean, from which
an upturn away from the exponential tail is evident. This is a
consequence of the extremum in the PDF atm=0. The effect
is independent of system size for the values studied and
within the numerical error obtained, although we cannot ex-
clude the possibility of corrections to scaling that disappear
slowly on the scale of the sizes studied. For temperatures
below T*sLd the turning point atm=0 is moved outside the
accessible window of measurement, but the PDF is not suf-
ficiently skewed to give a good fit to theXY model data. For

FIG. 1. Order parameter PDF forT=2.33J=TcsL=64d sLd
[24], T*sL=64d=2.11J s3d, andT=1.54J sqd, with L=64. The in-
set is a zoom onmP f−5;3g.

FIG. 2. PDF for a subsystemL=32, in system of sizeL0=128,
for B=B*sL=32d=0.0035J at TcsL=32d (symbols). The line is the
PDF for the 2DXY model.
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temperatures betweenT*sLd and T=1.54J the the statistics
are poor for large fluctuations, which is consistent with hav-
ing just a few rare events taking the magnetization out to-
ward the constraintm=0. At lower temperature still, the dis-
tribution crosses over to a Gaussian, as expected for an
uncorrelated system. The relevance of the turning point in
the PDF in the critical region depends on the universality
class and it is one of the ways in which universality-class-
dependent critical fluctuations appear.

III. BOUNDARY CONDITIONS AND MAGNETIC FIELD

It is clear that the quality of the comparison with the 2D
XY model would be improved if the turning point in the
probability density atm=0 was either displaced or removed.
Two obvious ways in which one might do this are first in
changing the boundary condition and second in adding a
magnetic field. Changing from periodic to fixed or window
boundaries one can expect to observe small changes in the
form of the universal scaling function[16,22]. One might
think that these boundaries would make a finite size system
more rigid with respect to a global spin flip, thus reducing
the probability of a microstate withm=0 and improving the
quality of the fit. We have studied the distribution for a win-
dow of sizeL embedded in a larger system of sizeL0. The
fits to the PDF for the 2DXY model are qualitatively better,
but the same upturn away from the exponential tail is ob-
served for fluctuations of more than about 5s from the mean.
The situation is not quantitatively changed compared with
periodic boundaries. The data are not shown here.

A real quantitative improvement is found, however, for
the study of fluctuations in a magnetic field. Approaching the
critical point by fixingT=TcsLd and applying a small fieldB,
a field B*sLd is defined for which the PDF of magnetic fluc-
tuations gives the best fit to the 2DXY data. The data for
B*sLd=0.0035J for window boundaries, withL=64 andL0

=128, are shown in Fig. 2. To the eye the quality of the fit is
excellent. This is confirmed quantitatively by measuring the
skewnessg and kurtosisk of the distribution. We findg
=0.890±0.01,k=4.495±0.01, which are in excellent agree-
ment with those of the 2DXY model (gXY=0.890 andkXY
=4.489). The application of a magnetic field breaks the sym-
metry and removes the minimum from the PDF for the order
parameter. This can be seen in Fig. 3, where we show the
evolution of the PDF, for a window of sizeL=32 in a larger
system of sizeL0=128 for field varying between zero and
B*sL=32d. For zero field the minimum in probability atm
=0 is clearly visible and the fluctuations below the mean are
cut off by the constraintmù0. As the field increases the
mean magnetization increases and the variances is reduced,
pushing the constraintmù0 out to larger negative values of
m. At the same time the end point of the distribution is no
longer a minimum, that is, the PDF terminates with a finite
slope. Within the window of observation, one clearly sees an
exponential tail developing which approaches asymptotically
that of the 2DXY model. For larger fields the asymmetry is
reduced and the PDF crosses over to a Gaussian. The curve
for the 2DXY model therefore seems to define an envelope
giving the maximum possible asymmetry as the field varies

in the region of the critical point. The behavior for periodic
boundary conditions is similar. One again sees the develop-
ment of an exponential tail with the same slope as the 2DXY
model, but for the best fit the cutoff corresponding tom=0
remains within the window −8,m,3. The data are not
shown here.

IV. CORRELATION LENGTH AT T*
„L …

In this section we concentrate on the critical properties of
T*sLd. Figure 4 shows howT*sLd scales with system size. As
noted in Refs.[10,13], T*sLd scales withL as Tc−T*sLd
~L−1/n, with n.1, the expected value conforming to the
scaling hypothesis for the 2D Ising model. These finite size
scaling results imply that the magnetic correlation length
jsLd is diverging with the system size atT*sLd, such that
jsLd /L=const. This is confirmed by the observed universal-
ity of Psmd along this locus of points[19]. The correlation
length can be computated from the spin-spin connected cor-
relation function:

GLsur i − r jud = kSsr idSsr jdl − kSsr idlkSsr jdl.

Different curves obtained forL=128 and various tempera-
tures are plotted on Fig. 5.

FIG. 3. PDF for a subsystemL=32, in system of sizeL0=128,
for various values of the magnetic fieldB at TcsL=128d. The plain
curve is the PDF for the 2DXY model.

FIG. 4. Evolution ofT*sLd with L. The solid line is the best
linear fit.
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The numerical data are fitted well by the expression

GLsr,Td =
1

rhe−r/jLsTd,

with h=0.24±0.01, in good agreement with the theoretical
valueh= 1

4. Values ofjsLd andjsLd /L are shown in Table I.
The main criticism of Zheng and Trimper[13], that jsLd is
small, is immediately apparent, but the ratiojsLd /L.0.03 is
indeed constant, to a good approximation, confirming that
the correlation length is diverging with system size, as con-
jectured. In this respect we are indeed dealing with a critical
phenomenon despite the small values measured for the sys-
tem sizes considered. This “small, yet diverging” quantity
plays an important role in the approximate universality ob-
served between disparate systems.

V. CLUSTER SIZES AND DISTRIBUTION

The definition of clusters in the Swendsen-Wang algo-
rithm is a good way to study structures in the 2D Ising model
[26]. A cluster is defined as a connected graph of spins in the
sense of Ref.[26], with magnetization opposed to the spa-
tially averaged value over all the lattice. In concrete terms, a
cluster is a white object in the snapshots shown in Figs. 6–8.
Cluster sizes are calculated for each generated spin configu-
ration and averaged over many realizations.

Given the small value for the correlation length atT*sLd
one might expect the range of cluster sizes to be extremely
limited. One of the surprises of this study is that this is not
the case. One can get a feeling for this by first studying
snapshots. In Figs. 6–8, we show three configurations; the
first has magnetizationm close to the mean value. One can

clearly see a range of cluster sizes up to a characteristic size
that is small compared withL. The second snapshot shows a
configuration with magnetization four standard deviations
below the mean,m=kml−4s. A much bigger cluster is
present. The large fluctuation is due to the presence of this
large coherent structure. This is very different from what one
would expect for fluctuations of an uncorrelated system: in
this case, a large deviation would correspond to a configura-
tion with many small and uncorrelated clusters appearing
spontaneously. This scenario is extremely unlikely, which is
why fluctuations away from the critical point are Gaussian.
Here it is clear that, while the correlation length fixes the size
of typical clusters, much bigger clusters are not excluded.
They are rare events, but not so rare as to be experimentally
irrelevant. This can be compared with the configuration
taken atTcsLd, shown in Fig. 8. Here, coherent structures
spanning the entire system are not rare. In this situation the
PDF depends strongly on the universality class and generic
behavior is not expected. Moving along the locus of points
T*sLd, the size of typical clusters scales withL through the
scaling of jsLd and we expect the size of rare clusters to
scale in the same way. In this sense the only length scale in
the problem alongT*sLd is L. Apart from this, the system is
scale-free, despite the small values ofjsLd extracted numeri-
cally.

From the mapping of the Ising model at criticality onto a
percolation problem[26,27] one expects the clusters to have

FIG. 5. Correlation functions forL=128 and various tempera-
tures T=2.30J s+d ,2.27J s3d ,2.24J spd ,2.17J shd. The lines are
the best fits.

TABLE I. j andj /L for variousL.

L 32 36 40 44 52 56 64 128

jsLd 0.83 1.0 1.1 1.25 1.45 1.42 1.7 2.9

jsLd /L 0.026 0.028 0.027 0.028 0.028 0.025 0.026 0.026

FIG. 6. Typical configuration atT*sLd.
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a power law distribution of sizes. Results for the distribution
of cluster sizesPssd, obtained forL=128 for various tem-
peratures belowTcsLd, are presented in Fig. 9. As the tem-
perature is belowTcsLd the system possesses a spanning
cluster whose spin direction defines the global magnetization
direction. Note that, while for standard Metropolis Monte
Carlo simulations the magnetization direction of the span-
ning cluster changes extremely rarely, for Swendson-Wang
Monte Carlo simulations symmetry is not broken and the
direction oscillates between “spin up” and “spin down.” The
spanning cluster is included in the statistics shown in Fig. 9.

As expected, as the temperature approachesTcsLd the prob-
ability of finding large clusters increases and the distribution
approaches a power law. However, for temperatures below
T*sLd there is a separation of scales, with a gap in probability
between the largest nonspanning cluster and the spanning
cluster. The gap closes at aboutT*sLd and above this tem-
perature the statistics of the spanning and the secondary clus-
ters are mixed[28]. When this is the case the largest clusters
of up spins and down spins will be of the same size and there
will be a non-negligible probability of having zero magneti-
zation. The mixing of statistics of the spanning and second-
ary clusters is therefore perfectly consistent with the obser-
vation that the turning point of the PDF, atm=0, moves into
the window of numerical or experimental observations forT
aboveT*sLd and that the tail of the distributionPsmd is no
longer well approximated by an exponential.

At T*sLd the cluster distribution is well represented by a
power law out to cluster sizes=Ncluster/N,2/100. This is
just about the size of the large cluster in the second snapshot
of Fig. 7. Above this size, corrections to scaling are manifest
as one might expect, but it is worth noting that the limit of
power law behavior corresponds to clusters of sizes well in
excess of the correlation length extracted from the autocor-
relation function. As shown in Fig. 10 the range of applica-
tion of a power law distribution increases with system size.
For L=512 it extends over almost six orders of magnitude of
probability and three of cluster size. The fitted exponent de-
creases with increasingL, as shown in Table II. ForL=512
the best fit is forPssd,s−tsLd with tsLd=2.2±0.1. This seems
to correspond to the estimated exponent for percolating clus-
ters [29,30] t=2+b /nDf .2.1, whereDf =187/96 is the
fractal dimension for the 2D Ising model[31,32], confirma-
tion of the critical nature of our observations.

In this section we have shown that clusters atT*sLd show,
rather remarkably, both scale-free behavior, and a separation
of scales: Typical cluster size, maximum secondary cluster
size, and spanning cluster size are all fixed byL; however,
their amplitudes are sufficiently different to ensure a mini-
mum of interference between the three scales. In the low
temperature phase of the 2DXY model, the ratio of variance

FIG. 7. Rare event atT*sLd.

FIG. 8. Typical configuration atTc.

FIG. 9. Cluster size distributionPssd for L=128 and
T=2.29J s+d, T*sL=128d=2.25J s3d, T=2.22J spd, and
T=2.13J shd ss=Ncluster/Nd.
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to mean magnetization iss / kml=AT/J [23], where A
<0.04. This is a critical phenomenon, in that the ratio is
system size independent. However, it goes to zero at zero
temperature, meaning that the critical fluctuations have zero
amplitude and, despite their singular nature, the system visits
an infinitesimal part of phase space near the mean value of
the magnetization. The separation of scales for cluster for-
mation in the Ising case is analogous to this. It corresponds
to a situation where the fluctuations are critical, but where
the limits of phase space(m=1,m=0, or m=−1) are not
approached. We propose here that the observed generic be-
havior and universality class independence must have their
origin in this point.

VI. EXTREME CLUSTER DISTRIBUTIONS

The form of the distribution in Fig. 2 bears a strong re-
semblance to Gumbel’s first asymptotic solution for extreme
values [10,16]. Indeed there have been a series of recent
papers searching for a connection between this form for glo-
bal fluctuation and extreme statistics[22,33]. Such a connec-
tion has failed to emerge in Gaussian interface models, re-
lated to the 2DXY model [18], but as there is here direct
access to obvious real space objects, the clusters, it seems
natural to investigate extreme statistics for the clusters. One
relevant question is whether the largest cluster dominates
Psmd, rendering the problem of non-Gaussian fluctuations an
extreme value problem for the clusters. The answer is no.
While the distribution for the largest cluster is skewed in the
right direction and looks qualitatively quite similar toPsmd,
it is not sufficient to reproduce the global fluctuations quan-
titatively. This conclusion has been tested in detail. We ex-
press the magnetization as

m= 1 − 2o
j=1

`
nj

N
,

with nj =0∀ j . jmax. Approximate order parametersmk are
constructed:

mk = 1 − 2o
j=1

k
nj

N
.

If extreme value statistics are relevant for the complete order
parameter PDF, then starting fromk=1 Psmkd, with mk

=smk−kmkld /s, should converge toPsmd for just a few val-
ues of k. Results are shown in Fig. 11 fork=1,5,10 and
compared with the complete order parameter PDF. The con-
vergence is slow andk=10 is not sufficient to reproduce well
the global PDF. We conclude that all the clusters are required
to reproduce the global fluctuations. This is not then an ex-
treme value problem, at least in terms of clusters.

This result is rather similar to that obtained for the 2DXY
model [17] and for related Gaussian interface models[18],
although in the latter more detailed information on the mi-
croscopic distributions is available. The non-Gaussian fluc-
tuations occur because the largest cluster makes a macro-
scopic contribution to the many body sum. However, this
contribution does not dominate; it is of the same order as the
sum over all the other clusters. In this sense critical fluctua-
tions are a marginal case between statistics dominated by the
majority, leading to the central limit, and statistics dominated
by a single event, for example, Lévy statistics.

VII. INTERMITTENCY AND CRITICAL FLUCTUATIONS

Figure 12 shows a sequence of magnetization values for
configurations generated by a Metropolis Monte Carlo algo-
rithm at temperatureT*sLd. The asymmetric nature of the
distribution is evident from the stochastic time series. We
remark that the data bear a striking resemblance to the time
series of injected power into a closed turbulent flow at fixed
Reynolds number[3]. The two systems share the character-
istic of making large deviations from the mean value, on a
scale set by the variance of the distributions. This is the so

FIG. 10. Cluster size distribution atT*sLd for L
=64 sDd , 128 sLd , 256 s+d, and 512s3d. The solid lines are the
best power laws obtained.

TABLE II. Exponent tsLd of the power laws obtained for the
cluster size distributions.

L 16 32 64 128 256 512

tsLd 3.6 3.6 2.5 2.4 2.3 2.2

FIG. 11. PDF ofmk, for k=1 s+d , 5 sLd , 10 s3d, and nonap-
proximate order parameter(solid line), for L=64 atT*sL=64d.
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called “intermittency” which is so important in studies of
turbulence. It is not the purpose of this paper to discuss the
detailed properties of intermittency; we simply make a com-
ment concerning the scale of intermittency in the 2D Ising
model in the region of the critical point. In Fig. 13, a similar
time series is shown for a simulation atTcsLd. One can
clearly see that the range of fluctuations on the scale ofs is
smaller atTcsLd than atT*sLd. This is an unconventional way
of characterizing fluctuations in the context of critical phe-
nomena. Usually one discusses the susceptibilityx
=s1/Tds2, which is a diverging quantity at a critical point.
For a finite size system,TcsLd is generally defined at the
temperature wherex and hences is a maximum[34]. What
we observe here is that, although the fluctuations on an ab-
solute scale are maximized atTcsLd, on a relative scale, as
fixed by s they are maximized atT*sLd. BetweenT*sLd and
TcsLd, large deviations from the mean value are cut off be-
cause of the constraints on the phase space in which the
fluctuations can occur. Specifically, the free energy barrier
between “spin up” configurations and “spin down” configu-
rations is surmountable with the consequence that the limits
0, kml,1 become the relevant limits for fluctuations and

the variance and the mean order parameter values become of
the same size. In this way the magnetic symmetry, which is
broken in the ordered phase, is reestablished on passing
through the phase transition. For temperatures up toT*sLd,
despite the growing fluctuations, the system behavesalmost
as if only a single phase existed, for which the order param-
eter could vary within the limits −̀,m,`. The distribu-
tion for the 2DXY model corresponds to the case where this
is a limitingly good approximation[23]. If, therefore, we
make a rather loose definition of intermittency, as the ten-
dency to make fluctuations away from the mean on the scale
of s with a probability that differs from that for a Gaussian
function, then maximum intermittency occurs atT*sLd and
not atTcsLd.

VIII. CONCLUSION

In this article we have compared the order parameter fluc-
tuations of a finite size 2D Ising model, in the region of the
critical temperature, with those of the 2DXY model in the
low temperature phase. Our motivation for doing this is the
observation that fluctuations of global quantities in a wide
range of different correlated systems are of similar form to
those in the 2DXY model, or equivalent Gaussian interface
models[22]. Approaching the critical temperatureTc along
the zero field axis, or applying a small fieldB at the critical
temperature, one can identify a temperatureT*sLdsB=0d and
a field B*sLd, close to the critical point, for which the order
parameter fluctuations are similar to those of the 2DXY
model. We have established the critical scaling behavior of
the locus of temperaturesT*sLd. The correlation lengthj
diverges with system size along the locus of temperatures
T*sLd, as one might expect for critical scaling. However, the
ratio j /L,0.03 is a small constant. This is a key point.
Critical fluctuations are usually associated with a phase tran-
sition and a change in phase space symmetry. In the 2D Ising
model the symmetry between the two competing phases is
reflected in the form of the PDF, imposing thatm=0 corre-
sponds to a turning point in the probability density. However,
the 2DXY model is an exception, in that there is a continu-
ous line of critical points in the low temperature phase, but
no phase transition or associated change in symmetry[35].
To an excellent approximation the critical fluctuations occur
in an unconstrained phase space[23]. Hence, criticality in
the Ising model can resemble that in the 2DXY model only
if the change in symmetry is not apparent. This corresponds
to the condition that the ratioj /L is small. In the case of
B*sLd, the agreement between the PDFs for order parameter
fluctuations in the two systems is exceptionally good: High
quality numerical data for the Ising model are indistinguish-
able from the analytical results for the 2DXY model. How-
ever, differences are observable for data atT*sLd. The agree-
ment is better in the former case, as the field breaks the
symmetry between the two competing ordered phases, thus
eliminating the turning point, or the minimum value from the
PDF. In this case, the phase space available for fluctuations
strongly resembles that of the 2DXY model.

Driven, nonequilibrium systems showing strong correla-
tions, such as turbulent flow[2,4], resistance networks[9],

FIG. 12. Metropolis evolution ofm at T*sLd.

FIG. 13. Metropolis evolution ofm at TcsLd.
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self-organized critical systems[10], or growing interfaces,
resemble the 2DXY model, in that there is no associated
phase transition and no sudden change of limits that con-
strains the fluctuations as the correlations build up. We pro-
pose that observation of a non-Gaussian PDF with finite
skewness and an exponential tail, for fluctuations in a global
quantity, is a characteristic of correlated fluctuations in an
effectively unbounded phase space. The example of the 2D
Ising model serves to show that this is not the case for criti-
cal phenomena associated with a second-order phase transi-
tion. However, this is a detail specific to critical phenomena,
related to the fact that the fluctuations become so large that
they allow the system to explore the whole allowed phase
space of order parameter values. From this analysis one
could argue that fluctuations atT*sLd are not strong. This is
true on an absolute scale. For example, the susceptibility,
which is a measure of the variance of the distribution, is
small at T*sLd compared with the maximum value from
which one definesTcsLd. However, at this temperature ex-
treme fluctuations compared with the variance are capped by
the constraint 0,m,1. Parametrizing in terms of the re-
duced variablem=sm−kmld /s changes this conclusion:
Fluctuations inm are essentially unbounded atT*sLd while
they are constrained atTcsLd. Hence the largest fluctuations
in m occur atT*sLd and not atTcsLd. It is the variance of the
distribution which defines the scale of the fluctuations that
one might observe experimentally[2] or numerically, and so
in this senseT*sLd is highly relevant. Physically, this means
that atT*sLd large fluctuations are rare enough not to modify
s, but not too rare to be observed. As long as the constraints
relevant to the phase transition remain unimportant, increas-

ing the level of fluctuations, that is, increasing the ratio
kml /s, there will be little if any evolution of the PDF. This is
exactly what is observed for the 2DXY model: The PDF has
the universal form discussed above, independently of the
critical exponent along the critical line[16,23]. This seems
consistent with the observed generic behavior in disparate
systems and also appears to be compatible with recent renor-
malization group calculations on Gaussian interface models
with quenched disorder[36]. In the latter a study is made of
the PDF for Gaussian interfaces(of which the low tempera-
ture phase of the 2DXY model is an example) in the pres-
ence of disorder. This is shown to be highly irrelevant, with
the PDF being unchanged from that of the underlying Gauss-
ian model.

It remains to quantify what we mean by “little evolution
of the PDF.” In this paper we have shown that atT*sLd, or
B*sLd, dependence on universality class is largely absent. It
has been further shown that, while the boundary conditions
are important for quantitative comparison, their effects are
not very significant. However, we have remained firmly in
two dimensions. Moving to three dimensions will no doubt
lead to variations and this will prove an interesting test for
our explanation of the observed approximate universality for
global fluctuations in correlated systems.
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