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Criterion for universality-class-independent critical fluctuations:
Example of the two-dimensional Ising model
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Order parameter fluctuations for the two-dimensional Ising model in the region of the critical temperature
are presented. A locus of temperatufédl) and a locus of magnetic field (L) are identified, for which the
probability density function is similar to that for the two-dimensioXd model in the spin wave approxima-
tion. The characteristics of the fluctuations along these points are largely independent of universality class. We
show that the largest range of fluctuations relative to the variance of the distribution occurs along these loci of
points, rather than at the critical temperature itself and we discuss this observation in terms of intermittency.
Our motivation is the identification of a generic form for fluctuations in correlated systems in accordance with
recent experimental and numerical observations. We conclude that a universality-class-dependent form for the
fluctuations is a particularity of critical phenomena related to the change in symmetry at a phase transition.
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[. INTRODUCTION the universality class of the model, as well as on the shape
a[_l6] of the sample and on the boundary conditip2g]. The
apparent similarity of the form of the fluctuations, over and

tial flmd tbempor;a_ll corrizlﬁmotns,t_from "’;" ?rgals of phyts_lcl]s. Re?’;1bove the universality class of the models under consider-
cently, observations of fluctuations of global, or spatially av-,iion “therefore seems rather puZZIfAg).

eraged measures of such correlations, have provided a Gjyen the generality of the above observations in more
possible link between critical phenomena and nonequilibyomplex systems, it is important to understand this point. In
rium systems. That is, the probability density functi®DF)  this paper we address it in detail for the two-dimensional
for order parameter fluctuations in the low temperature critiysing model and in doing so pose the following questions.
cal phase of the two-dimension@D) XY model, shown in |s the similarity in form quantitative, or only qualitative? Is
Figs. 1 and 2 below, is very similar to PDEH for spatially  this PDF really a measure of critical fluctuations in the
fluctuating or temporally averaged quantities in turbulentproblem? Finally, can we, from this investigation shed any
flow [2—-4], for electroconvection in nematic liquid crystals further light on the reason for the apparent “super-
[5], for numerical models of dissipative systefds-9 and of  universality” observed in the wide range of experimental and
“self-organized criticality” [10], for fluctuations of river —numerical systems?
heights [11,12, as well as for other equilibrium systems In answer to these questions, we show that the distribution
close to criticality[10,13—15. The simplicity of the 2DXY  functions for the Ising an&kY models atT"(L) are similar,
model allows a complete understanding of fluctuation phewith the latter representing an excellent fit over almost any
nomena in this casgl6-18. The contrary is true for non- accessible window of measurements for experimental sys-
equilibrium systems; the lack of microscopic theory makesems. However, they are not the same functions. Numerical
the problems extremely complex. Phenomenological obsefVidence suggests that the difference will remain in the ther-
vations and analogy with better understood systems cafpodynamic limit. The origin of the dlffe_rence is yhe structure
therefore be extremely useful. of ph_ase space as_somated with the Ising transition. For large
However, for other critical systems, such generic behaviofMPlitude fluctuations the system localized in one half of
seems only to be observed under restricted conditions. F(E—uase space is able to surmount the barrier separating it from
example, it has been shown that magnetic fluctuations in th e other, symmetric half of phase space. If instead one ap-

! . ; " proaches the critical point by applying a small magnetic
two-dimensional Ising model, at a temperatliiél.) (where field, symmetry remains broken and one finds a figld.)
L is the system size in units of the lattice constabelow

. o iving excellent quantitative agreement between the PDF for
but near the critical temperatuie, are similar to those of gving ;. d

3 . the Ising model and that for the 2RY model.
the 2D XY model [10,13-13. Given the important role \ye confirm that, despite the small value of the correlation

played by uni_versality clagses in critical phenomena, thjs i?engthf [13,15 at T'(L), the system does show evidence of

rather surprising. In fact, it is well established that critical correlations on all scales up to a length of the order of the

fluctuations, as measured&t[19-21, depend in general on system size. A consequence of this is the development of
coherent structures, the clusters of spins, up to this macro-
scopic scale, that dominate the exponential tail of the distri-

There is ubiquitous interest in systems with extended sp

*Electronic address: maxime.clusel@ens-lyon.fr bution.
"Electronic address: fortin@Ipt1.u-strashg.fr From the above, we conclude that the dependence of the
*Electronic address: peter.holdsworth@ens-lyon.fr PDF on the universality class comes from the structure of
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FIG. 1. Order parameter PDF foF=2.33J=Ty(L=64) (¢)
[24], T (L=64)=2.11] (X), andT=1.54 (O), with L=64. The in-
set is a zoom o e [-5;3].
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Previous studies by Bramwebt al. [10], Zheng and
Trimper[13], and Zhend15] suggest that there is a tempera-
ture T"(L) just below the critical temperature, for which the
PDF is close to that of the 2RY model in the low tempera-
ture phase. It was further suggested tRdt) scales toward
the critical temperature as the thermodynamic limit is taken
and can thus be interpreted as a critical phenomdndh
The first step in our study was to confirm this result. Note
that, within the spin wave approximation, the PDF for the 2D
XY model has the form shown in Figs. 1 and 2, indepen-
dently of temperature and hence of critical expongt].
The PDF was calculated using the Swendsen-Wang Monte
Carlo algorithm[25] for various sizet between 32 and 512.
Here we defind” (L) as the temperature for which the skew-
ness of the distributiom(T (L)) is equal to that for the 2D
XY model, yyy, for data restricted to the window=(m

phase space and the way in which symmetry is restored on{M)/o €[~6;3]. We are able to establish this criterion
passing through the phase transition. If long range correlavith & numerical precision/(T (L))=7yxy+0.01, giving an
tions develop, without the ensuing fluctuations exposing &fror for T'(L) of less than 2%. This criterion, though pre-
structured phase space, such as occurs in the Ising transitig#ise, is arbitrary and we could choose others. However, as it
then the form of the fluctutations will be largely independentis only an approximate agreement between the two sets of

of universality class. This is the case in the 2I¥ model

data, making alternative definitions does not alter the results

[23] and we propose that it is key to the approximate “superdiscussed below. Figure 1 shows JdgrTl(m)] againstu for
universality” observed in a large array of correlated systemsvarious temperatures and for64. The solid line is the PDF

II. ORDER PARAMETER FLUCTUATIONS IN THE 2D
ISING MODEL

The Hamiltonian for the Ising model is given by

H=-J2SS, S=t1,
)

for the 2DXY model [16]. The best fit is forT (L=64)
=2.11J, while the critical temperature for the infinite system,
as given by Onsager’s exact solution,Tis=2.25]). One can
see thatT"(L) is significantly shifted belowT.. At higher
temperatures, the probability for fluctuations below the mean
is a concave function ofu| and there is no region approxi-
mating to an exponential tail. The PDF is cut off at a finite
value of u corresponding to the constraimi=0. As one
expects, this corresponds to a turning point in probability and

with J>0 the exchange constant. We study the model on aeflects the access of the finite size system to the complete

square lattice of siz&l=L X L, with periodic boundary con-
ditions and with lattice parameter=1. The order parameter
is defined as the modulus of the magnetization:

T mTmyye

FIG. 2. PDF for a subsystein=32, in system of sizé&,=128,
for B=B"(L=32=0.0039 at T(L=32) (symbol3. The line is the
PDF for the 2DXY model.

and symmetric phase space.

A distribution with an exponential or quasiexponential tail
cannot correctly describe this minimum and therefore for
symmetry reasons the distribution for the XI¥ model can-
not exactly describe the data for the Ising model in zero field,
for any temperature beloW,(L) [24]. However, afT" (L) the
fit is good for fluctuations out to <@ below the mean mag-
netization, corresponding to a probability density of 30
[15]. From an experimental point of view, reliable data for
©<-6 would be exceptiondl2,5,9, and in this sense the
agreement between the Ising and ¥ model data is very
satisfactory(see inset of Fig. )l Here we have good statistics
for fluctuations out as far as «8rom the mean, from which
an upturn away from the exponential tail is evident. This is a
consequence of the extremum in the PDInat0. The effect
is independent of system size for the values studied and
within the numerical error obtained, although we cannot ex-
clude the possibility of corrections to scaling that disappear
slowly on the scale of the sizes studied. For temperatures
below T"(L) the turning point am=0 is moved outside the
accessible window of measurement, but the PDF is not suf-
ficiently skewed to give a good fit to theY model data. For
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temperatures betweeh (L) and T=1.54) the the statistics i T T

are poor for large fluctuations, which is consistent with hav- 2;;2:21243

ing just a few rare events taking the magnetization out to- L B3 10% 4
ward the constrainin=0. At lower temperature still, the dis- (4)B=4 10"y ® 3
tribution crosses over to a Gaussian, as expected for an_. [ ©8%10%

uncorrelated system. The relevance of the turning point in £ S;Z::::% E

the PDF in the critical region depends on the universality 'ﬁ (B)B-(L)ﬁlm-s
class and it is one of the ways in which universality-class-  q4°

dependent critical fluctuations appear.

IIl. BOUNDARY CONDITIONS AND MAGNETIC FIELD

It is clear that the quality of the comparison with the 2D 10‘5_8 - —t—
XY model would be improved if the turning point in the (m'— (m))/o
probability density am=0 was either displaced or removed. _ _
Two obvious ways in which one might do this are first in  FIG. 3. PDF for a subsystein=32, in system of siz&(=128,
changing the boundary condition and second in adding T various values of the magnetic fielilat T¢(L=128). The plain
magnetic field. Changing from periodic to fixed or window CUrve is the PDF for the 2IXY model.

boundaries one can expect to observe small changes in g the region of the critical point. The behavior for periodic
form of the universal scaling functiofl6,23. One might  poyndary conditions is similar. One again sees the develop-
think that these boundaries would make a finite size systemant of an exponential tail with the same slope as thex¥D
more rigid with respect to a global spin flip, thus reducing mogel, but for the best fit the cutoff correspondingnte:0

the probability of a microstate witm=0 and improving the o mains within the window -& 1 <3. The data are not
quality of the fit. We have studied the distribution for a win- shown here.

dow of sizeL embedded in a larger system of sizg The

fits to the PDF for the 2DXY model are qualitatively better, IV. CORRELATION LENGTH AT T(L)

but the same upturn away from the exponential tail is ob- | s section we concentrate on the critical properties of
served for fluctuations of more than about som the mean. T*(L). Figure 4 shows how' (L) scales with system size. As
The situation is not quantitatively changed compared Witrhoted in Refs.[10,13, T'(L) scales withL as T,-T'(L)
periodic boundaries. The data are not shown here. Y ¢

-1/v H —~ i
A ealquanttaive mprovement s ound, however,for L W0 L3 the SRt vae conforning o e
the study of fluctuations in a magnetic field. Approaching the g hyp 9 )

e . - > , ; scaling results imply that the magnetic correlation length
CI’I'FICEU p*omt _by f|x!ngT—Tc(L) .and applying a small f'.ela’ &L) is diverging with the system size &t (L), such that
a field B (L) is defined for which the PDF of magnetic fluc- _ - . :
. . . &L)/L=const. This is confirmed by the observed universal-
tuations gives the best fit to the 2RY data. The data for ity of TI() along this locus of point§l9]. The correlation
B"(L)=0.0039 for window boundaries, with.=64 andL, y K 9 P '

~128, are shown in Fig. 2. To the eye the quality of the fit iSIength can be computated from the spin-spin connected cor-

excellent. This is confirmed quantitatively by measuring therEIatlon function:

skewnessy and kurtosisk of the distribution. We findy G (|ri —r,-|):<S(ri)S(rJ-)>—<S(ri)><S(rj)>.
=0.890+£0.01x=4.495+0.01, which are in excellent agree-
ment with those of the 2IXY model (yxy=0.890 andkyy
=4.489. The application of a magnetic field breaks the sym-
metry and removes the minimum from the PDF for the order T " l ' T T . ; l
parameter. This can be seen in Fig. 3, where we show the
evolution of the PDF, for a window of siZe=32 in a larger
system of sizd =128 for field varying between zero and
B'(L=32). For zero field the minimum in probability ah o
=0 is clearly visible and the fluctuations below the mean are {, 2.
cut off by the constrainm=0. As the field increases the &
mean magnetization increases and the variansereduced,

pushing the constraimh= 0 out to larger negative values of 205
u. At the same time the end point of the distribution is no

longer a minimum, that is, the PDF terminates with a finite

slope. Within the window of observation, one clearly sees an
exponential tail developing which approaches asymptotically YT 005
that of the 2DXY model. For larger fields the asymmetry is i/L
reduced and the PDF crosses over to a Gaussian. The curve

for the 2D XY model therefore seems to define an envelope FIG. 4. Evolution of T'(L) with L. The solid line is the best
giving the maximum possible asymmetry as the field variesinear fit.

Different curves obtained foL=128 and various tempera-
tures are plotted on Fig. 5.

2.15
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FIG. 5. Correlation functions foL=128 and various tempera-
tures T=2.3Q (+),2.270 (X),2.24) (*),2.17 (). The lines are
the best fits.

The numerical data are fitted well by the expression

1
— T Ar1E(T)
GL(ryT) - r” L ’

FIG. 6. Typical configuration at” (L).

with 7=0.24+0.01, in good agreement with the theoretical

1 . .
value 7= V_a_lu_es of¢(L) and£(L)/L are shown in Tabl? I clearly see a range of cluster sizes up to a characteristic size
The main criticism of Zheng and Trimpgt3], that{(L) is  hat i small compared with. The second snapshot shows a
small, is immediately apparent, but the rafi®)/L=0.03is  cqnfiguration with magnetization four standard deviations
indeed constant, to a good approximation, confirming thahe|ow the meanm=(m)-4o. A much bigger cluster is
the correlation length is diverging with system size, as CONyasent. The large fluctuation is due to the presence of this
jectured. In this respect we are indeed dealing with a criticajy g6 coherent structure. This is very different from what one
phenomenon despite the small values measured for the Sygg, 4 expect for fluctuations of an uncorrelated system: in
tem sizes considered. This “small, yet diverging” quantity s case, a large deviation would correspond to a configura-
plays an important role in the approximate universality ob-jon \with many small and uncorrelated clusters appearing
served between disparate systems. spontaneously. This scenario is extremely unlikely, which is

why fluctuations away from the critical point are Gaussian.

V. CLUSTER SIZES AND DISTRIBUTION Here iF is clear that, while thg correlation length fixes the size

' of typical clusters, much bigger clusters are not excluded.

The definition of clusters in the Swendsen-Wang algo-They are rare events, but not so rare as to be experimentally
rithm is a good way to study structures in the 2D Ising modelirelevant. This can be compared with the configuration
[26]. A cluster is defined as a connected graph of spins in théaken atT¢(L), shown in Fig. 8. Here, coherent structures
sense of Ref[26], with magnetization opposed to the spa- spanning the entire system are not rare. In this situation the
tially averaged value over all the lattice. In concrete terms, £DF depends strongly on the universality class and generic
cluster is a white object in the snapshots shown in Figs. 6—&¢havior is not expected. Moving along the locus of points
Cluster sizes are calculated for each generated spin configdi-(L), the size of typical clusters scales withthrough the
ration and averaged over many realizations. scaling of £(L) and we expect the size of rare clusters to

Given the small value for the correlation lengthTatL) scale in the same way. In this sense the only length scale in
one might expect the range of cluster sizes to be extremelthe problem along” (L) is L. Apart from this, the system is
limited. One of the surprises of this study is that this is notscale-free, despite the small valuest@f) extracted numeri-
the case. One can get a feeling for this by first studyingcally.
snapshots. In Figs. 6—8, we show three configurations; the From the mapping of the Ising model at criticality onto a
first has magnetizatiom close to the mean value. One can percolation problenfi26,27 one expects the clusters to have

TABLE I. £ and é/L for variousL.

L 32 36 40 44 52 56 64 128
&(L) 0.83 1.0 11 1.25 1.45 1.42 1.7 2.9
&L)/L 0.026 0.028 0.027 0.028 0.028 0.025 0.026 0.026
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FIG. 9. Cluster size distributionP(s) for L=128 and
T=2.29 (+), T (L=128=2.25] (X), T=2.22) (%), and
T=2.13) (O) (s=Ngiyste/ N).

As expected, as the temperature approadhés) the prob-
ability of finding large clusters increases and the distribution
approaches a power law. However, for temperatures below
FIG. 7. Rare event & (L). T'(L) there is a separation of scales, with a gap in probability
between the largest nonspanning cluster and the spanning
a power law distribution of sizes. Results for the distributioncluster. The gap closes at abdlitL) and above this tem-
of cluster sizesP(s), obtained forL=128 for various tem- perature the statistics of the spanning and the secondary clus-
peratures belovl (L), are presented in Fig. 9. As the tem- ters are mixed28]. When this is the case the largest clusters
perature is belowTy(L) the system possesses a spanningdf up spins and down spins will be of the same size and there
cluster whose spin direction defines the global magnetizatiowill be a non-negligible probability of having zero magneti-
direction. Note that, while for standard Metropolis Monte zation. The mixing of statistics of the spanning and second-
Carlo simulations the magnetization direction of the spanary clusters is therefore perfectly consistent with the obser-
ning cluster changes extremely rarely, for Swendson-Wangation that the turning point of the PDF, mt=0, moves into
Monte Carlo simulations symmetry is not broken and thethe window of numerical or experimental observationsTor
direction oscillates between “spin up” and “spin down.” TheaboveT (L) and that the tail of the distributiobl(x) is no
spanning cluster is included in the statistics shown in Fig. 9longer well approximated by an exponential.

At T'(L) the cluster distribution is well represented by a
power law out to cluster size=Ngsied N<<2/100. This is
just about the size of the large cluster in the second snapshot
of Fig. 7. Above this size, corrections to scaling are manifest
as one might expect, but it is worth noting that the limit of
power law behavior corresponds to clusters of sizes well in
excess of the correlation length extracted from the autocor-
relation function. As shown in Fig. 10 the range of applica-
tion of a power law distribution increases with system size.
ForL=512 it extends over almost six orders of magnitude of
probability and three of cluster size. The fitted exponent de-
creases with increasing, as shown in Table Il. FoL=512
the best fit is forP(s) ~ s with AL)=2.2+0.1. This seems
to correspond to the estimated exponent for percolating clus-
ters [29,3Q 7=2+B/vD;=2.1, whereD;=187/96 is the
fractal dimension for the 2D Ising modg31,32, confirma-
tion of the critical nature of our observations.

In this section we have shown that cluster§gL) show,
rather remarkably, both scale-free behavior, and a separation
of scales: Typical cluster size, maximum secondary cluster
size, and spanning cluster size are all fixedLhyhowever,
their amplitudes are sufficiently different to ensure a mini-
mum of interference between the three scales. In the low
FIG. 8. Typical configuration af. temperature phase of the 20¥ model, the ratio of variance
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FIG. 10. Cluster size distribution atT (L) for L FIG. 11. PDF ofmy, for k=1 (+), 5(¢), 10(X), and nonap-
=64 (A), 128(<), 256(+), and 512(X). The solid lines are the proximate order parametégolid ling), for L=64 atT (L=64).
best power laws obtained.

to mean magnetization isr/(my=AT/J [23], where A m=1-2>, Dl,

~0.04. This is a critical phenomenon, in that the ratio is = N

system size independent. However, it goes to zero at zergjitn Nj=00 j> jma Approximate order parametens, are

temperature, meaning that the critical fluctuations have zerggnstructed:

amplitude and, despite their singular nature, the system visits

an infinitesimal part of phase space near the mean value of K n

the magnetization. The separation of scales for cluster for- me=1- 2_2 Nl

mation in the Ising case is analogous to this. It corresponds =1

to a situation where the fluctuations are critical, but wheref extreme value statistics are relevant for the complete order

the limits of phase spacém=1,m=0, or m=-1) are not parameter PDF, then starting frok=1 IT(w,), with

app_roached. We propose her_e that the observed generic b_ecmk_<mk>)/g, should converge tI(w) for just a few val-

havior and universality class independence must have theffes ofk. Results are shown in Fig. 11 fd=1,5,10 and

origin in this point. compared with the complete order parameter PDF. The con-

vergence is slow ankl=10 is not sufficient to reproduce well

the global PDF. We conclude that all the clusters are required
The form of the distribution in Fig. 2 bears a strong re-to reproduce the global fluctuations. This is not then an ex-

semblance to Gumbel’s first asymptotic solution for extremdreme value problem, at least in terms of clusters.

values[10,16. Indeed there have been a series of recent This result is rather similar to that obtained for the X

papers searching for a connection between this form for glomodel[17] and for related Gaussian interface modgl§],

bal fluctuation and extreme statisti2,33. Such a connec- although in the latter more detailed information on the mi-

tion has failed to emerge in Gaussian interface models, recroscopic distributions is available. The non-Gaussian fluc-

lated to the 2DXY model [18], but as there is here direct tuations occur because the largest cluster makes a macro-

access to obvious real space objects, the clusters, it seerfgopic contribution to the many body sum. However, this

natural to investigate extreme statistics for the clusters. Oneontribution does not dominate; it is of the same order as the

relevant question is whether the largest cluster dominatesum over all the other clusters. In this sense critical fluctua-

II(w), rendering the problem of non-Gaussian fluctuations arions are a marginal case between statistics dominated by the

extreme value prob|em for the clusters. The answer is nd'_najority, Ieading to the central ||m|t, and statistics dominated

While the distribution for the largest cluster is skewed in theby @ single event, for example, Lévy statistics.

right direction and looks qualitatively quite similar Id(w),

it is not sufficient to reproduce the global fluctuations quan- VII. INTERMITTENCY AND CRITICAL FLUCTUATIONS

titatively. This conclusion has been tested in detail. We ex-

press the magnetization as

VI. EXTREME CLUSTER DISTRIBUTIONS

Figure 12 shows a sequence of magnetization values for
configurations generated by a Metropolis Monte Carlo algo-
rithm at temperaturd” (L). The asymmetric nature of the
distribution is evident from the stochastic time series. We
remark that the data bear a striking resemblance to the time
series of injected power into a closed turbulent flow at fixed
L 16 32 64 128 256 512 Reynolds numbef3]. The two systems share the character-
AL) 3.6 36 25 24 23 22 istic of making large deviations from the mean value, on a
scale set by the variance of the distributienThis is the so

TABLE Il. Exponent (L) of the power laws obtained for the
cluster size distributions.
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2 ' ' ' the variance and the mean order parameter values become of
the same size. In this way the magnetic symmetry, which is
broken in the ordered phase, is reestablished on passing
through the phase transition. For temperatures up’th),
despite the growing fluctuations, the system behahemst

as if only a single phase existed, for which the order param-
eter could vary within the limits s <m<e. The distribu-

tion for the 2DXY model corresponds to the case where this
is a limitingly good approximatio23]. If, therefore, we
make a rather loose definition of intermittency, as the ten-
dency to make fluctuations away from the mean on the scale
of o with a probability that differs from that for a Gaussian
function, then maximum intermittency occurs Bt(L) and

not atT,(L).

.
) o 500 1000 1500 2000
time

VIIl. CONCLUSION

FIG. 12. Metropolis evolution ofn at T (L). In this article we have compared the order parameter fluc-

) _ o ) . ) tuations of a finite size 2D Ising model, in the region of the
called “intermittency” which is so important in studies of . iical temperature, with those of the 20Y model in the
turbulence. It is not the purpose of this paper to discuss thg,,, temperature phase. Our motivation for doing this is the
detailed properties of intermittency; we simply make a com-gpservation that fluctuations of global quantities in a wide
ment concerning the scale of intermittency in the 2D Isingiange of different correlated systems are of similar form to
model in the region of the critical point. In Fig. 13, a similar tge in the 2DXY model, or equivalent Gaussian interface
time series is shown for a simulation &t(L). One can  oqels[22]. Approaching the critical temperatufie along
clearly see that the range of fluctuations on the scale isf  the zero field axis, or applying a small fieiat the critical
smaller afT¢(L) than afT (L). This is an unconventional way temperature, one can identify a temperaftiréd)(B=0) and
of characterizing fluctuations in the context of critical phe-j field B*(L), close to the critical point, for which the order
Qomenjz. Usually one discusses the susceptibily parameter fluctuations are similar to those of the 2B
=(1/T)o* which is a diverging quantity at a critical point. n4e|. We have established the critical scaling behavior of
For a finite size systemT.(L) is generally defined at the the locus of temperature® (L). The correlation lengtht
temperature wherg and hencer is a maximum[34]. What  diverges with system size along the locus of temperatures
we observe here is that, although the fluctuations on an aly*(1)"as one might expect for critical scaling. However, the
solute scale are maximized &(L), on a relative scale, as (a0 ¢/L.~0.03 is a small constant. This is a key point.
fixed by o they are maximized af (L). BetweenT (L) and  critical fluctuations are usually associated with a phase tran-
Tc(L), large deviations from the mean value are cut off be-sjtion and a change in phase space symmetry. In the 2D Ising
cause of the constraints on the phase space in which th@odel the symmetry between the two competing phases is
fluctuations can occur. Specifically, the free energy barriefeflected in the form of the PDF, imposing that0 corre-
between “spin up” configurations and “spin down” configu- sponds to a turning point in the probability density. However,
rations is surmountable with the consequence that the limitthe 2D XY model is an exception, in that there is a continu-
0<{m)<1 become the relevant limits for fluctuations and ous line of critical points in the low temperature phase, but
no phase transition or associated change in symm8sjy
To an excellent approximation the critical fluctuations occur
in an unconstrained phase spgd@8]. Hence, criticality in
the Ising model can resemble that in the X¥ model only
if the change in symmetry is not apparent. This corresponds

a3 to the condition that the ratig/L is small. In the case of

§ B'(L), the agreement between the PDFs for order parameter
T fluctuations in the two systems is exceptionally good: High
= quality numerical data for the Ising model are indistinguish-

able from the analytical results for the 20Y model. How-
ever, differences are observable for datd'dt). The agree-
ment is better in the former case, as the field breaks the
< symmetry between the two competing ordered phases, thus
eliminating the turning point, or the minimum value from the
PDF. In this case, the phase space available for fluctuations

) L L A L
1000 2000 3000 4000 5000 6000

time strongly resembles that of the 20Y model.
Driven, nonequilibrium systems showing strong correla-
FIG. 13. Metropolis evolution om at T(L). tions, such as turbulent flo\i2,4], resistance networkg9],
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self-organized critical systemd.0], or growing interfaces, ing the level of fluctuations, that is, increasing the ratio
resemble the 2DXY model, in that there is no associated (m)/ o, there will be little if any evolution of the PDF. This is
phase transition and no sudden change of limits that corexactly what is observed for the 20Y model: The PDF has
strains the fluctuations as the correlations build up. We prothe universal form discussed above, independently of the
pose that observation of a non-Gaussian PDF with finiteritical exponent along the critical lingl6,23. This seems
skewness and an exponential tail, for fluctuations in a globatonsistent with the observed generic behavior in disparate
quantity, is a characteristic of correlated fluctuations in ansystems and also appears to be compatible with recent renor-
effectively unbounded phase space. The example of the 2B ization group calculations on Gaussian interface models
Ising model serves to show that this is not the case for critiyin quenched disorddB6]. In the latter a study is made of
cal phenomena associated with a second-order phase trangiz ppF for Gaussian interfacésf which the low tempera-
tion. However, this is a detail specific to critical phenomenayg 1o phase of the 2IXY model is an examp)en the pres-
related to the fact that the fluctuations become so large that, e of disorder. This is shown to be highly irrelevant, with

they allow the system to explore the whole allowed phasgne ppF peing unchanged from that of the underlying Gauss-
space of order parameter values. From this analysis ongn model.

could argue that fluctuations @t(L) are not strong. This is It remains to quantify what we mean by “little evolution
true on an absolute scale. For_ example, the_su_sceptibilit)bf the PDFE.” In this paper we have shown thatTatL), or
which is a measure of the_vanance of.the distribution, IS3*(L), dependence on universality class is largely absent. It
small at T'(L) compared with the maximum value from paq heen further shown that, while the boundary conditions
which one defines(L). However, at this temperature ex- gre important for quantitative comparison, their effects are
treme fluctuations compared with the variance are capped yot very significant. However, we have remained firmly in
the constraint &m<1. Parametrizing in terms of the re- two dimensions. Moving to three dimensions will no doubt
duced variable u=(m-(m))/o changes this conclusion: |ead to variations and this will prove an interesting test for
Fluctuations inu are essentially unbounded &t(L) while  our explanation of the observed approximate universality for
they are constrained di(L). Hence the largest fluctuations global fluctuations in correlated systems.

in u occur atT" (L) and not afT,(L). It is the variance of the

distribution which defines the scale of the fluctuations that ACKNOWLEDGMENTS
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